반응형
Classification
· Spam E-mail Detection : Spam or Ham
· Facebook feed : show or hide
· Credit Card Fraudulent Transaction detection : legitimate/fraud
0, 1 encoding
· Spam Detection : Spam(1) or Ham(0)
· Facebook feed : show(1) or hide(0)
· Credit Card Fraudulent Transaction detection : legitimate(0) or fraud (1)
Linear regression
· We know Y is 0 or 1
-H(x) = Wx + b
· Hypothesis can give values large than 1 or less than 0
Sigmoid
g(z) = 1 / (1+exp(-z))
Logistic Hypothesis
z = Wx
H(x) = 1 / (1 + exp(-W^T*X))
반응형
'Deep Learning lecture' 카테고리의 다른 글
ML lab 05: TensorFlow로 Logistic Classification의 구현하기 (new) (0) | 2020.04.28 |
---|---|
ML lec 5-2 Logistic Regression의 cost 함수 설명 (0) | 2020.04.28 |
ML lab 04-2: TensorFlow로 파일에서 데이타 읽어오기 (new) (0) | 2020.04.27 |
ML lab 04-1: multi-variable linear regression을 TensorFlow에서 구현하기 (new) (0) | 2020.04.27 |
ML lec 04 - multi-variable linear regression (*new) (0) | 2020.04.27 |
댓글