ML (Hands-On Machine Learning)/Unsupervised Learning Techniques1 Chapter 9. Unsupervised Learning Techniques 오늘날 머신 러닝의 기술들이 Supervised Learning을 기반으로 하고 있지만, 사실 대부분의 데이터는 라벨링이 되어있지 않다. Input feature X가 존재하지만 라벨 y는 존재하지 않는다. 제조 생산 라인에서 각 품목의 사진을 몇 장 찍고 결함이있는 품목을 감지하는 시스템을 만든다고 가정하자. 자동으로 사진을 찍는 시스템을 만들면 하루에 수천장의 사진을 얻을 수 있을 것이다. 몇 주 동안 사진을 계속 찍는다면 매우 큰 데이터셋을 만들 수 있을 것이다. 그러나 라벨이 없다. 만약 결함이 있는지 없는지 판단하는 binary classifier를 만든다면, 'defective' 나 'normal'로 매 사진마다 라벨이 필요하다. 이 일은 전문적인 지식을 갖춘 사람이 앉아서 일일이 사진을 보면.. 2020. 5. 12. 이전 1 다음