ML lab 06-1: TensorFlow로 Softmax Classification의 구현하기
lab-06-1-softmax_classifier.py # Lab 6 Softmax Classifier import tensorflow as tf tf.set_random_seed(777) # for reproducibility x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]] X = tf.placeholder("float", [None, 4]) Y = tf.plac..
2020. 5. 3.
ML lab 05: TensorFlow로 Logistic Classification의 구현하기 (new)
Logistic Regression lab-05-1-logistic_regression.py # Lab 5 Logistic Regression Classifier import tensorflow as tf tf.set_random_seed(777) # for reproducibility x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] y_data = [[0], [0], [0], [1], [1], [1]] # placeholders for a tensor that will be always fed. X = tf.placeholder(tf.float32, shape=[None, 2]) Y = tf.placeholder(tf.float32, shape=[..
2020. 4. 28.